

Corrections to "General Analysis of a Parallel-Plate Waveguide Inhomogeneously Filled with Gyromagnetic Media"

M. MROZOWSKI AND J. MAZUR

We would like to correct the following mistakes in our paper.¹

1) The normalized magnetic field (defined in (1)) should read $\tilde{H} = \epsilon_0 \eta_0 \vec{H}$, where η_0 and ϵ_0 are, respectively, the intrinsic impedance of free space and the permittivity of vacuum.

2) Equation (14) should read

$$\lambda_1^{(i)} = -\lambda_2^{(i)} = \left\{ \frac{1}{2} \left[g_2 - (g_2^2 - 4g_0)^{1/2} \right] \right\}^{1/2}$$

$$\lambda_3^{(i)} = -\lambda_4^{(i)} = \left\{ \frac{1}{2} \left[g_2 + (g_2^2 - 4g_0)^{1/2} \right] \right\}^{1/2}.$$

Manuscript received December 3, 1986.

M. Mrozowski is with the Polish Academy of Sciences, Institute of Fluid-Flow Machinery, 80-952 Gdańsk, Poland.

J. Mazur is with the Technical University of Gdańsk, Telecommunication Institute, 80-952 Gdańsk, Poland.

IEEE Log Number 8613411.

¹M. Mrozowski and J. Mazur, *IEEE Trans. Microwave Theory Tech.*, vol MTT-34, pp. 388-395, Apr. 1986.

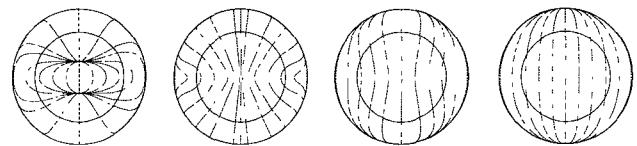


Fig. 14. Magnetic fields for HEH_{12} mode at $z = L/2$.

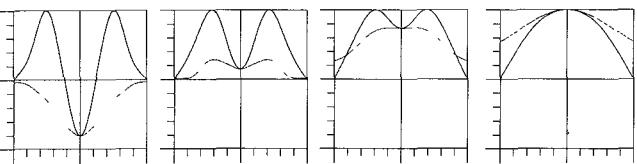


Fig. 16. Magnetic fields for HEH_{21} mode at $z = L/2$.

Corrections to "New Results in Dielectric-Loaded Resonators"

K. A. ZAKI

In the above paper,¹ an error was made in some of the field plots. The corrected plots are shown below.

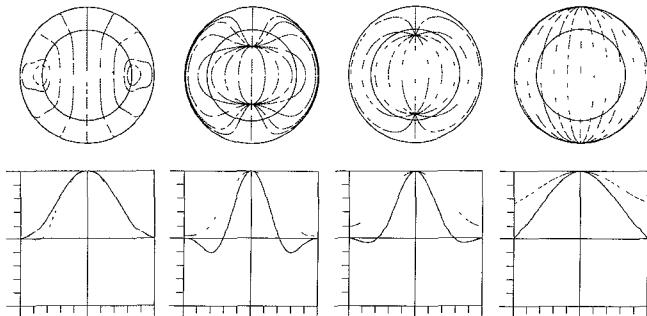


Fig. 12. Magnetic fields for HEH_{11} mode at $z = L/2$.

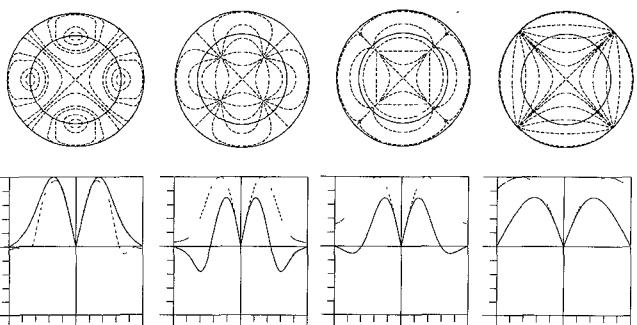


Fig. 16. Magnetic fields for HEH_{21} mode at $z = L/2$.

Manuscript received November 27, 1986.

The author is with the Department of Electrical Engineering, University of Maryland, College Park, MD 20742.

IEEE Log Number 8613410.

¹K. A. Zaki and C. Chen, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 815-824, July 1986.

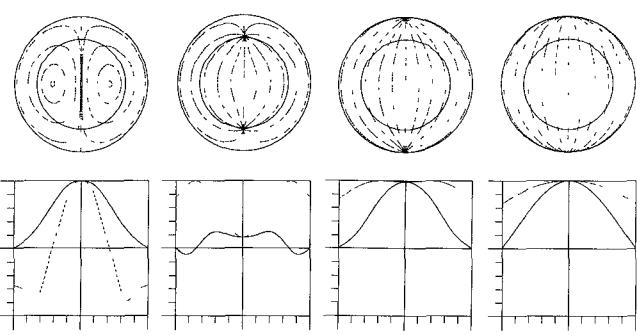
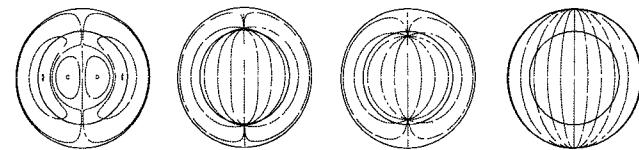
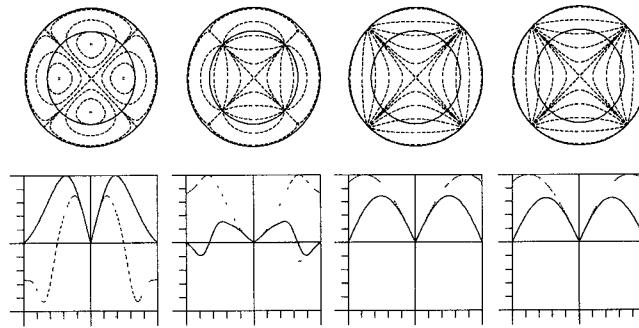




Fig. 18. Magnetic fields for HEE_{11} mode at $z = L/2$.

Fig. 20. Magnetic fields for HEE₁₂ mode at $z = L/2$.Fig. 22. Magnetic fields for HEE₂₁ mode at $z = L/2$.

Corrections to "A New Model for the Apparent Characteristic Impedance of Finned Waveguide and Finlines"

P. PRAMANICK AND P. BHARTIA

In the above paper,¹ the coefficients of (25) should have read

$$p = [AN^2 + 2BN - \bar{\alpha}_1^2]/BN^2$$

$$q = \left[B + 2AN - \frac{N}{4}(b/a)^2(\lambda/b)^2 - 2\bar{\alpha}_1\bar{\alpha}_2 \right]/BN^2$$

$$r = \left[A - \frac{1}{4}(b/a)^2(\lambda/b)^2 - \bar{\alpha}_2^2 \right]/BN^2$$

$$A = 1 + b_1(s/a)(\epsilon_r - 1)$$

$$B = a_1(s/a)(\epsilon_r - 1)$$

$$\bar{\alpha}_1 = \alpha_1/Z_0(f)$$

$$\bar{\alpha}_2 = \alpha_2/Z_0(f)$$

and α_1 and α_2 are given by (20a) and (20b), respectively.

Manuscript received December 2, 1986.

P. Pramanick is with the Satellite Communication Department, COM DEV Ltd., Cambridge, Ontario, Canada N1R 7H6.

P. Bhartia is with the Department of National Defence, Ottawa, Canada.

IEEE Log Number 8613409.

¹P. Pramanick and P. Bhartia, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 1437-1441, Dec. 1986.